Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Evaluate the expression. tan(cos−11312)
A
1312
B
512
C
135
D
125
Verified step by step guidance
1
Understand the problem: We need to evaluate the expression \( \tan\left(\cos^{-1}\left(\frac{12}{13}\right)\right) \). This involves finding the tangent of an angle whose cosine is \( \frac{12}{13} \).
Recall the identity for inverse cosine: If \( \theta = \cos^{-1}\left(\frac{12}{13}\right) \), then \( \cos(\theta) = \frac{12}{13} \). We need to find \( \tan(\theta) \).
Use the Pythagorean identity: \( \sin^2(\theta) + \cos^2(\theta) = 1 \). Substitute \( \cos(\theta) = \frac{12}{13} \) into the identity to find \( \sin(\theta) \).
Calculate \( \sin(\theta) \): \( \sin^2(\theta) = 1 - \left(\frac{12}{13}\right)^2 \). Solve for \( \sin(\theta) \) by taking the square root of the result.
Find \( \tan(\theta) \): Use the definition \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \). Substitute the values of \( \sin(\theta) \) and \( \cos(\theta) \) to find \( \tan(\theta) \).