Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Write the expression in terms of the appropriate cofunction. cos(4519π)
A
cos(907π)
B
sin(454031π)
C
sin(907π)
D
cos(904031π)
Verified step by step guidance
1
Identify the cofunction identities: The cofunction identities relate sine and cosine functions. Specifically, \( \cos(\theta) = \sin\left(\frac{\pi}{2} - \theta\right) \) and \( \sin(\theta) = \cos\left(\frac{\pi}{2} - \theta\right) \).
Convert the given angles to a common form: For \( \cos\left(\frac{19\pi}{45}\right) \), find the cofunction using \( \sin\left(\frac{\pi}{2} - \frac{19\pi}{45}\right) \).
Simplify the angle: Calculate \( \frac{\pi}{2} - \frac{19\pi}{45} \) to find the equivalent angle for the sine function.
Repeat the process for the second expression: For \( \cos\left(\frac{7\pi}{90}\right) \), use the identity \( \sin\left(\frac{\pi}{2} - \frac{7\pi}{90}\right) \) and simplify the angle.
Apply the cofunction identity to the sine expression: For \( \sin\left(\frac{4031\pi}{45}\right) \), use \( \cos\left(\frac{\pi}{2} - \frac{4031\pi}{45}\right) \) and simplify the angle.