Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Expand the expression using the sum & difference identities and simplify. sin(−θ−2π)
A
−sinθ−cosθ
B
0
C
−sinθ
D
−cosθ
Verified step by step guidance
1
Recognize that the expression involves the sine of a sum: \( \sin(-\theta - \frac{\pi}{2}) \). We can use the sine sum identity: \( \sin(a + b) = \sin a \cos b + \cos a \sin b \).
Rewrite the expression using the identity: \( \sin(-\theta - \frac{\pi}{2}) = \sin(-\theta) \cos(-\frac{\pi}{2}) + \cos(-\theta) \sin(-\frac{\pi}{2}) \).
Recall the values of trigonometric functions at specific angles: \( \cos(-\frac{\pi}{2}) = 0 \) and \( \sin(-\frac{\pi}{2}) = -1 \).
Substitute these values into the expression: \( \sin(-\theta) \cdot 0 + \cos(-\theta) \cdot (-1) \).
Simplify the expression: \( 0 - \cos(-\theta) \). Since \( \cos(-\theta) = \cos(\theta) \), the expression simplifies to \( -\cos(\theta) \).