Determine the vertices and foci of the ellipse .
Table of contents
- 0. Fundamental Concepts of Algebra3h 32m
- 1. Equations and Inequalities3h 27m
- 2. Graphs1h 43m
- 3. Functions & Graphs2h 17m
- 4. Polynomial Functions1h 54m
- 5. Rational Functions1h 23m
- 6. Exponential and Logarithmic Functions2h 28m
- 7. Measuring Angles40m
- 8. Trigonometric Functions on Right Triangles2h 5m
- 9. Unit Circle1h 19m
- 10. Graphing Trigonometric Functions1h 19m
- 11. Inverse Trigonometric Functions and Basic Trig Equations1h 41m
- 12. Trigonometric Identities 2h 34m
- 13. Non-Right Triangles1h 38m
- 14. Vectors2h 25m
- 15. Polar Equations2h 5m
- 16. Parametric Equations1h 6m
- 17. Graphing Complex Numbers1h 7m
- 18. Systems of Equations and Matrices3h 6m
- 19. Conic Sections2h 36m
- 20. Sequences, Series & Induction1h 15m
- 21. Combinatorics and Probability1h 45m
- 22. Limits & Continuity1h 49m
- 23. Intro to Derivatives & Area Under the Curve2h 9m
19. Conic Sections
Ellipses: Standard Form
Multiple Choice
Determine the vertices and foci of the following ellipse: 9x2+16y2=1.
A
Vertices: (4,0),(−4,0)
Foci: (7,0),(−7,0)
B
Vertices: (0,4),(0,−4)
Foci: (0,7),(0,−7)
C
Vertices: (4,0),(−4,0)
Foci: (3,0),(−3,0)
D
Vertices: (0,4),(0,−4)
Foci: (0,3),(0,−3)
0 Comments
Verified step by step guidance1
Identify the standard form of the ellipse equation: \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \). In this problem, the equation is \( \frac{x^2}{9} + \frac{y^2}{16} = 1 \).
Determine the values of \( a^2 \) and \( b^2 \). Here, \( a^2 = 9 \) and \( b^2 = 16 \). Since \( b^2 > a^2 \), this is a vertical ellipse.
Calculate the vertices of the ellipse. For a vertical ellipse, the vertices are at \( (0, \pm b) \). Since \( b = \sqrt{16} = 4 \), the vertices are \( (0, 4) \) and \( (0, -4) \).
Find the foci of the ellipse using the formula \( c^2 = b^2 - a^2 \). Calculate \( c \) where \( c = \sqrt{b^2 - a^2} = \sqrt{16 - 9} = \sqrt{7} \).
Determine the coordinates of the foci. For a vertical ellipse, the foci are at \( (0, \pm c) \). Thus, the foci are \( (0, \sqrt{7}) \) and \( (0, -\sqrt{7}) \).
Related Videos
Related Practice
Multiple Choice

