Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Use the Pythagorean identities to rewrite the expression with no fraction. 1−secθ1
A
1+secθ
B
tan2θ1
C
−cot2θ(1+secθ)
D
−tan2θ(1+secθ)
Verified step by step guidance
1
Start by recognizing the Pythagorean identity: \( \sec^2\theta = 1 + \tan^2\theta \). This identity will help us rewrite expressions involving \( \sec\theta \) and \( \tan\theta \).
Rewrite \( \frac{1}{1 - \sec\theta} \) using the identity \( \sec\theta = \frac{1}{\cos\theta} \). This gives \( \frac{1}{1 - \frac{1}{\cos\theta}} = \frac{\cos\theta}{\cos\theta - 1} \).
Next, consider \( \frac{1}{\tan^2\theta} \). Using the identity \( \tan^2\theta = \sec^2\theta - 1 \), rewrite \( \frac{1}{\tan^2\theta} \) as \( \frac{1}{\sec^2\theta - 1} \).
Combine the expressions: \( \frac{\cos\theta}{\cos\theta - 1} \cdot \frac{1}{\sec^2\theta - 1} \cdot (1 + \sec\theta) \). Simplify using the identity \( \sec^2\theta = 1 + \tan^2\theta \).
Finally, simplify the expression to get \( -\cot^2\theta(1 + \sec\theta) \) or \( -\tan^2\theta(1 + \sec\theta) \) by recognizing the relationship between \( \tan\theta \) and \( \cot\theta \).