Open QuestionFind the magnitude and direction of the net gravitational force on mass A due to masses B and C in Fig. E13.6. Each mass is 2.00 kg.
Open QuestionTwo uniform spheres, each with mass M and radius R, touch each other. What is the magnitude of their gravitational force of attraction?
Open QuestionA typical adult human has a mass of about 70 kg. (a) What force does a full moon exert on such a human when it is directly overhead with its center 378,000 km away? (b) Compare this force with the force exerted on the human by the earth
Open QuestionTwo spherical objects have a combined mass of 150 kg. The gravitational attraction between them is 8.00 x 10⁻⁶ N when their centers are 20 cm apart. What is the mass of each?
Open QuestionTwo 65 kg astronauts leave earth in a spacecraft, sitting 1.0 m apart. How far are they from the center of the earth when the gravitational force between them is as strong as the gravitational force of the earth on one of the astronauts?
Open QuestionThe International Space Station orbits 300 km above the surface of the earth. What is the gravitational force on a 1.0 kg sphere inside the International Space Station?
Open QuestionTwo uniform spheres, each of mass 0.260 kg, are fixed at points A and B (Fig. E13.5). Find the magnitude and direction of the initial acceleration of a uniform sphere with mass 0.010 kg if released from rest at point P and acted on only by forces of gravitational attraction of the spheres at A and B.
Open QuestionThree stars, each with the mass of our sun, form an equilateral triangle with sides 1.0 x 10¹² m long. (This triangle would just about fit within the orbit of Jupiter.) The triangle has to rotate, because otherwise the stars would crash together in the center. What is the period of rotation?