Open QuestionWhat is the frequency of an electromagnetic wave that has the same wavelength as a 2.5 kHz sound wave in water?
Open QuestionA helium-neon laser beam has a wavelength in air of 633 nm. It takes 1.38 ns for the light to travel through 30 cm of an unknown liquid. What is the wavelength of the laser beam in the liquid?
Open QuestionSome modern optical devices are made with glass whose index of refraction changes with distance from the front surface. FIGURE P16.72 shows the index of refraction as a function of the distance into a slab of glass of thickness L. The index of refraction increases linearly from n₁ at the front surface to n₂ at the rear surface.b. Evaluate your expression for a 1.0-cm-thick piece of glass for which n₁ = 1.50 and n₂ = 1.60.
Open Question(a) A tank containing methanol has walls 2.50 cm thick made of glass of refractive index 1.550. Light from the outside air strikes the glass at a 41.3° angle with the normal to the glass. Find the angle the light makes with the normal in the methanol. (b) The tank is emptied and refilled with an unknown liquid. If light incident at the same angle as in part (a) enters the liquid in the tank at an angle of 20.2° from the normal, what is the refractive index of the unknown liquid?
Open QuestionA light beam travels at 1.94 * 10^8 m/s in quartz. The wavelength of the light in quartz is 355 nm. (b) If this same light travels through air, what is its wavelength there?
Open QuestionA beam of light has a wavelength of 650 nm in vacuum. (b) What is the wavelength of these waves in the liquid?
Open QuestionThe indexes of refraction for violet light λ = 400 nm2 and red light λ= 700 nm2 in diamond are 2.46 and 2.41, respectively. A ray of light traveling through air strikes the diamond surface at an angle of 53.5° to the normal. Calculate the angular separation between these two colors of light in the refracted ray.
Open QuestionAs shown in Fig. E33.11, a layer of water covers a slab of material X in a beaker. A ray of light traveling upward follows the path indicated. Using the information on the figure, find (b) the angle the light makes with the normal in the air.