Multiple ChoiceYou want to produce a mirror that can produce an upright image that would be twice as tall as the object when placed 5 cm in front of it. What shape should this mirror be? What radius of curvature should the mirror have?
Multiple ChoiceAn object is 20cm in front of a converging lens with a focal length of 30cm. Use ray tracing to determine the location of the image. Is the image upright or inverted?
Multiple ChoiceA 4 cm tall object is placed 15 cm in front of a concave mirror with a focal length of 5 cm. Where is the image produced? Is this image real or virtual? Is it upright or inverted? What is the height of the image?
Multiple ChoiceYou want to produce a mirror that can produce an upright image that would be twice as tall as the object when placed 5 cm in front of it. What shape should this mirror be? What radius of curvature should the mirror have?
Open QuestionThe thin glass shell shown in Fig. E34.15 has a spherical shape with a radius of curvature of 12.0 cm, and both of its surfaces can act as mirrors. A seed 3.30 mm high is placed 15.0 cm from the center of the mirror along the optic axis, as shown in the figure. (a) Calculate the location and height of the of this seed.
Open QuestionDental Mirror. A dentist uses a curved mirror to view teeth on the upper side of the mouth. Suppose she wants an erect with a magnification of 2.00 when the mirror is 1.25 cm from a tooth. (Treat this problem as though the object and lie along a straight line.) (b) What must be the focal length and radius of curvature of this mirror?
Open QuestionA spherical, concave shaving mirror has a radius of curvature of 32.0 cm. (b) Where is the ? Is the real or virtual?
Open QuestionYou hold a spherical salad bowl 60 cm in front of your face with the bottom of the bowl facing you. The bowl is made of polished metal with a 35-cm radius of curvature. (a) Where is the of your 5.0-cm-tall nose located?