Describe how to prepare each solution from the dry solute and the solvent. b. 125 g of 0.100 m NaNO3
For a solution prepared by dissolving 28.4 g of glucose (C6H12O6) in 355 g of water with a final volume of 378 mL, calculate the concentration in each unit: a. molarity, b. molality, c. percent by mass, d. mole fraction, e. mole percent.

Key Concepts
Molarity
Molality
Percent by Mass
Describe how to prepare each solution from the dry solute and the solvent. c. 125 g of 1.0% NaNO3 solution by mass
A solution is prepared by dissolving 20.2 mL of methanol (CH3OH) in 100.0 mL of water at 25 °C. The final volume of the solution is 118 mL. The densities of methanol and water at this temperature are 0.782 g/mL and 1.00 g/mL, respectively. For this solution, calculate the concentration in each unit. a. molarity
A solution is prepared by dissolving 20.2 mL of methanol (CH3OH) in 100.0 mL of water at 25 °C. The final volume of the solution is 118 mL. The densities of methanol and water at this temperature are 0.782 g/mL and 1.00 g/mL, respectively. For this solution, calculate the concentration in each unit. b. molality
A solution is prepared by dissolving 20.2 mL of methanol (CH3OH) in 100.0 mL of water at 25 °C. The final volume of the solution is 118 mL. The densities of methanol and water at this temperature are 0.782 g/mL and 1.00 g/mL, respectively. For this solution, calculate the concentration in each unit. c. percent by mass