Nitric oxide (NO) reacts readily with chlorine gas as follows: 2 NO(π) + Cl2(π) β 2 NOCl(π) At 700 K, the equilibrium constant πΎπ for this reaction is 0.26. For each of the following mixtures at this temperature, indicate whether the mixture is at equilibrium, or, if not, whether it needs to produce more products or reactants to reach equilibrium. (b) πNO = 0.12atm, πCl2 = 0.10atm, πNOCl = 0.050atm
The equilibrium constant constant πΎπ for C(π ) + CO2(π) β 2 CO(π) is 1.9 at 1000 K and 0.133 at 298 K. (a) If excess C is allowed to react with 25.0 g of CO2 in a 3.00-L vessel at 1000 K, how many grams of CO are produced? (b) If excess C is allowed to react with 25.0 g of CO2 in a 3.00-L vessel at 1000 K, how many grams of C are consumed?


Verified video answer for a similar problem:
Key Concepts
Equilibrium Constant (Kc)
Stoichiometry
Ideal Gas Law
At 900 Β°C, πΎπ = 0.0108 for the reaction
CaCO3(π ) β CaO(π ) + CO2(π)
A mixture of CaCO3, CaO, and CO2 is placed in a 10.0-L vessel at 900Β°C. For the following mixtures, will the amount of CaCO3 increase, decrease, or remain the same as the system approaches equilibrium?
(a) 15.0 g CaCO3, 15.0 g CaO, and 4.25 g CO2
(b) 2.50 g CaCO3, 25.0 g CaO, and 5.66 g CO2
(c) 30.5 g CaCO3, 25.5 g CaO, and 6.48 g CO2
At 700 K, the equilibrium constant for the reaction CCl4(π) β C(π ) + 2 Cl2(π) is πΎπ = 0.76. A flask is charged with 2.00 atm of CCl4, which then reaches equilibrium at 700 K. (a) What fraction of the CCl4 is converted into C and Cl2?
At 700 K, the equilibrium constant for the reaction CCl4(π) β C(π ) + 2 Cl2(π) is πΎπ = 0.76. A flask is charged with 2.00 atm of CCl4, which then reaches equilibrium at 700 K. (b) What are the partial pressures of CCl4 and Cl2 at equilibrium?