Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Determine the theoretical yield of H2S (in moles) if 48 mol Al2S3 and 48 mol H2O are reacted according to the following balanced reaction: Al2S3(s) + 6 H2O(l) β 2 Al(OH)3(s) + 3 H2S(g).
A
72 moles
B
24 moles
C
48 moles
D
96 moles
Verified step by step guidance
1
Identify the balanced chemical equation: \( \text{Al}_2\text{S}_3(s) + 6 \text{H}_2\text{O}(l) \rightarrow 2 \text{Al(OH)}_3(s) + 3 \text{H}_2\text{S}(g) \). This equation shows the stoichiometric relationships between reactants and products.
Determine the limiting reactant by comparing the mole ratio of \( \text{Al}_2\text{S}_3 \) and \( \text{H}_2\text{O} \) to the coefficients in the balanced equation. The balanced equation requires 1 mole of \( \text{Al}_2\text{S}_3 \) to react with 6 moles of \( \text{H}_2\text{O} \).
Calculate the moles of \( \text{H}_2\text{O} \) needed to completely react with 48 moles of \( \text{Al}_2\text{S}_3 \). Using the stoichiometry from the balanced equation, you need \( 48 \text{ mol Al}_2\text{S}_3 \times \frac{6 \text{ mol H}_2\text{O}}{1 \text{ mol Al}_2\text{S}_3} \).
Compare the calculated moles of \( \text{H}_2\text{O} \) needed with the available moles (48 moles). If the calculated moles exceed the available moles, \( \text{H}_2\text{O} \) is the limiting reactant; otherwise, \( \text{Al}_2\text{S}_3 \) is the limiting reactant.
Use the limiting reactant to calculate the theoretical yield of \( \text{H}_2\text{S} \). If \( \text{H}_2\text{O} \) is limiting, use \( 48 \text{ mol H}_2\text{O} \times \frac{3 \text{ mol H}_2\text{S}}{6 \text{ mol H}_2\text{O}} \). If \( \text{Al}_2\text{S}_3 \) is limiting, use \( 48 \text{ mol Al}_2\text{S}_3 \times \frac{3 \text{ mol H}_2\text{S}}{1 \text{ mol Al}_2\text{S}_3} \).