Calculus
Find the derivative of the function y=sec(3ex)y=\sec\left(3e^{x}\right).
Identify the inner function u=g(x)u = g(x), and the outer function y=f(u)y = f(u) for the composition y=f(g(x))y = f(g(x)). Then, find dydx\frac{\mathrm{dy}}{\mathrm{dx}}:
y=(4x−1)6y = (4x - 1)^6
Evaluate the following derivative using the table given below.
ddx(g(x)5)x=10\frac{\text{d}}{\text{dx}}\left(g\left(x\right)^5\right)_{x=10}dxd(g(x)5)x=10
Calculate the equation of the tangent line to the graph of y=y=y= 3cosx3^{\cos x}3cosx at x=0x=0x=0. Also, graph the function and the tangent line on the same coordinate system.