Calculus
Evaluate f′(x)f^{\prime}\left(x\right) at x=π4x=\frac{\pi}{4} if f(x)=cosxf\left(x\right)=\cos x.
A wave travels along a string, and its position in millimeters is described by h(t)=15(2cost+1)h\left(t\right)=15\left(2\cos t+1\right), for t≥0t\geq0, where tt represents time in seconds. Determine the velocity of the wave, v(t)=h′(t)v\left(t\right)=h^{\prime}\left(t\right).
Consider the equation below. Using differentiation, state if it is true or false.
ddx(2cotxcsc2x−8cotx−6x)=−6cot4x\frac{d}{dx}\left(2\cot x\csc^2x-8\cot x-6x\right)=-6\cot^4x