Calculus
Find a possible function h(x)h\left(x\right) and a number cc such that the following limit represents the slope of the curve y=h(x)y=h\left(x\right) at (c,h(c))(c,h(c)). Then, evaluate the limit:
limx→−14x2−2x−6x+1{\displaystyle\lim_{x\to-1}}\frac{4x^2-2x-6}{x+1}
Determine the derivative of the function g(t)=5t2+2tg(t)=5t^2+2t using limits.
The following formulas for f−′(a)f_{-}^{\prime}\left(a\right)f−′(a) and f+′(a)f_{+}^{\prime}\left(a\right)f+′(a) represent the left- and right-sided derivatives of a function at a point aaa, respectively:
f−′(a)=limh→0−f(a+h)−f(a)hf_{-}^{\prime}\left(a\right)={\displaystyle\lim_{h\to0^{-}}{\frac{f(a+h)-f(a)}{h}}}f−′(a)=h→0−limhf(a+h)−f(a), f+′(a)=limh→0+f(a+h)−f(a)hf_{+}^{\prime}\left(a\right)={\displaystyle\lim_{h\to0^{+}}{\frac{f(a+h)-f(a)}{h}}}f+′(a)=h→0+limhf(a+h)−f(a)
Consider f(x)={6−x2 if x≤23x−4 if x>2f\left(x\right)=\begin{cases}6-x^2~~~\text{if}~x\leq{2}\\ 3x-4~~~\text{if}~x\gt{2}\end{cases}. Find f−′(a)f_{-}^{\prime}\left(a\right)f−′(a) and f+′(a)f_{+}^{\prime}\left(a\right)f+′(a) at a=2a=2.