Calculus
A function f(x)f\left(x\right) has the following properties:
f′(x)>0f^{\prime}\left(x\right)>0 and f′f^{\prime}′(x)>0^{\prime}\left(x\right)>0, for x>4x>4
Which of the following is a possible graph of f(x)f\left(x\right)?
Graph the function f(x)=6−6x23+x83f\left(x\right)=6-6x^{\frac23}+x^{\frac83}. The first and second derivative are given.
f′(x)=−4x13+83x53f^{\prime}\left(x\right)=-\frac{4}{x^{\frac13}}+\frac83x^{\frac53}
f′′(x)=43x43+409x23f^{\prime\prime}\left(x\right)=\frac{4}{3x^{\frac43}}+\frac{40}{9}x^{\frac23}
Graph the given classical curve using analytical methods.
y2=x3−2x+3y^2=x^3-2x+3 ; dydx=3x2−22y\frac{dy}{dx}=\frac{3x^2-2}{2y}