Calculus
Refer to the graph of the function f(x)f(x)f(x) to find the given limit if exists. If the limit does not exist, write "DNE."
limx→5f(x){\displaystyle\lim_{x\to5}f\left(x\right)}x→5limf(x)
Evaluate the following limits and identify the horizontal asymptotes (if any) for the function f(x)=5x25x+3f\left(x\right)=\frac{5x}{25x+3}f(x)=25x+35x:
limx→∞f(x)\lim_{x\rightarrow\infty}f\left(x\right)limx→∞f(x)
limx→−∞f(x)\lim_{x\rightarrow-\infty}f\left(x\right)limx→−∞f(x)
Select the correct relationship between ϵ\epsilonϵ and δδδ to prove limx→−8∣5x∣=40{\displaystyle\lim_{x\to-8}\left|5x\right|=40}x→−8lim∣5x∣=40 using the ε−δε-δε−δ definition of a limit.
The radius of a right cylinder having a height of 15 cm15\text{ cm}15 cm and a surface area of U cm2U\text{ cm}^2U cm2 is given as r(U)=15(225+5Uπ−15)r\left(U\right)=\frac15\left(\sqrt{225+\frac{5U}{\pi}}-15\right)r(U)=51(225+π5U−15). Calculate limU→0+r(U){\displaystyle\lim_{U\to0^{+}}}r\left(U\right)U→0+limr(U) and provide an interpretation.
Use the following theorem to evaluate limx→0sin39x9x\displaystyle \lim_{x \to 0}{\frac{\sin{39x}}{9x}}:
limx→0sinxx=1\displaystyle \lim_{x \to 0}{\frac{\sin{x}}{x}}=1
On the interval (0,15),(0, 15),(0,15), locate the points where the function fff has discontinuities. For each discontinuity, indicate which continuity conditions are not met.
Let g(x)={x3−1x−1if x≠1aif x=1g\left(x\right)=\begin{cases}\frac{x^3-1}{x-1} & \text{if }x\ne1\\ a & \text{if }x=1\end{cases}g(x)={x−1x3−1aif x=1if x=1
For what value of aa is g(x)g\left(x\right) continuous at x=1x=1?