Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Simplify the expression. (sin2θtan2θ−1)csc2(θ)cos2(−θ)
A
cot2θ
B
tanθ
C
1
D
– 1
Verified step by step guidance
1
Start by rewriting the given expression: \( \left( \frac{\tan^2\theta}{\sin^2\theta} - 1 \right) \csc^2(\theta) \cos^2(-\theta) \).
Recall the trigonometric identities: \( \tan^2\theta = \frac{\sin^2\theta}{\cos^2\theta} \), \( \csc^2\theta = \frac{1}{\sin^2\theta} \), and \( \cos^2(-\theta) = \cos^2\theta \).
Substitute these identities into the expression: \( \left( \frac{\frac{\sin^2\theta}{\cos^2\theta}}{\sin^2\theta} - 1 \right) \frac{1}{\sin^2\theta} \cos^2\theta \).
Simplify the expression inside the parentheses: \( \frac{1}{\cos^2\theta} - 1 \).
Recognize that \( \frac{1}{\cos^2\theta} - 1 = \tan^2\theta \), and simplify the entire expression to find the result.