Multiple ChoiceCalculate the area of the shaded region between f(x)f\left(x\right) & g(x)g\left(x\right) contained between x=−4x=-4 & x=−2x=-2.
Multiple ChoiceSketch the region bounded by f(x)=−(x−2)2+5\textcolor{blue}{f\left(x\right)=-\left(x-2\right)^2+5} & g(x)=4x\textcolor{orange}{g\left(x\right)=4x} on the interval [0,1]\left\lbrack0,1\right\rbrack. Then set up an integral to represent the region's area and evaluate.
Multiple ChoiceShade the region bounded by f(x)=sinx\textcolor{blue}{f\left(x\right)=\sin x} & g(x)=cos2x\textcolor{orange}{g\left(x\right)=\cos2x} on the interval [π6,5π6]\left\lbrack\frac{\pi}{6},\frac{5\pi}{6}\right\rbrack. Then set up an integral to represent the region's area.
Multiple ChoiceFind the area of the shaded region between f(x)=x4−x2f\left(x\right)=x^4-x^2 & g(x)=3x2g\left(x\right)=3x^2.
Multiple ChoiceFind the area of the shaded region ONLY that lies between the line y=1y=1 & f(x)=sin2xf\left(x\right)=\sin2x.
Multiple ChoiceFind the shaded area between f(x)=x3+2x2\textcolor{orange}{f\left(x\right)=x^3+2x^2} & g(x)=x+2\textcolor{blue}{g\left(x\right)=x+2}.
Multiple ChoiceFind the area of the shaded region between f(x)=sin2x\textcolor{orange}{f\left(x\right)=\sin2x} & g(x)=2sinx\textcolor{blue}{g\left(x\right)=2\sin x} from x=0x=0 to x=2πx=2\pi.