Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Find the indefinite integral.
A
B
C
D
Verified step by step guidance
1
Rewrite the integrand \( \frac{3 - y^2}{2y} \) by splitting it into two separate terms: \( \frac{3}{2y} - \frac{y^2}{2y} \). Simplify each term to get \( \frac{3}{2y} - \frac{y}{2} \).
Set up the integral as \( \int \left( \frac{3}{2y} - \frac{y}{2} \right) \, dy \). Now, split the integral into two parts: \( \int \frac{3}{2y} \, dy - \int \frac{y}{2} \, dy \).
For the first term, \( \int \frac{3}{2y} \, dy \), factor out the constant \( \frac{3}{2} \) to get \( \frac{3}{2} \int \frac{1}{y} \, dy \). The integral of \( \frac{1}{y} \) is \( \ln|y| \), so this becomes \( \frac{3}{2} \ln|y| \).
For the second term, \( \int \frac{y}{2} \, dy \), factor out the constant \( \frac{1}{2} \) to get \( \frac{1}{2} \int y \, dy \). The integral of \( y \) is \( \frac{y^2}{2} \), so this becomes \( \frac{1}{2} \cdot \frac{y^2}{2} = \frac{y^2}{4} \).
Combine the results of the two integrals: \( \frac{3}{2} \ln|y| - \frac{y^2}{4} + C \), where \( C \) is the constant of integration.