Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Find the indefinite integral.
A
B
C
D
Verified step by step guidance
1
Step 1: Recognize that the integral involves a square root of a quadratic expression in the denominator, specifically \( \sqrt{4x^2 - 16} \). This suggests a trigonometric substitution might be appropriate. Rewrite \( 4x^2 - 16 \) as \( 4(x^2 - 4) \) to simplify the expression.
Step 2: Use the substitution \( x = 2\sec(\theta) \), which implies \( x^2 - 4 = 4\sec^2(\theta) - 4 = 4(\sec^2(\theta) - 1) = 4\tan^2(\theta) \). This substitution simplifies the square root \( \sqrt{4x^2 - 16} \) to \( 2\tan(\theta) \).
Step 3: Compute \( dx \) using the substitution \( x = 2\sec(\theta) \). Differentiating gives \( dx = 2\sec(\theta)\tan(\theta) d\theta \). Substitute \( x \), \( dx \), and \( \sqrt{4x^2 - 16} \) into the integral.
Step 4: After substitution, the integral becomes \( \int \frac{1}{x\sqrt{4x^2 - 16}} dx = \int \frac{1}{2\sec(\theta) \cdot 2\tan(\theta)} \cdot 2\sec(\theta)\tan(\theta) d\theta \). Simplify the expression to \( \int \frac{1}{4} d\theta \).
Step 5: Integrate \( \int \frac{1}{4} d\theta \) to get \( \frac{1}{4}\theta + C \). Finally, use the substitution \( \theta = \sec^{-1}\left|\frac{x}{2}\right| \) to express the result in terms of \( x \). The final answer is \( \frac{1}{4}\sec^{-1}\left|\frac{x}{2}\right| + C \).