Here are the essential concepts you must grasp in order to answer the question correctly.
Limit Definition
The precise definition of a limit states that for a function f(x) to approach a limit L as x approaches a value a, for every ε > 0, there exists a δ > 0 such that if 0 < |x - a| < δ, then |f(x) - L| < ε. This formalism is essential for rigorously proving limits in calculus.
Recommended video:
Epsilon-Delta Relationship
In the context of limits, the ε (epsilon) represents how close f(x) must be to the limit L, while δ (delta) represents how close x must be to the point a. Establishing a relationship between ε and δ is crucial for demonstrating that as x gets sufficiently close to a, f(x) will be within ε of L, thus proving the limit exists.
Recommended video:
Polynomial Functions
Polynomial functions, such as f(x) = x^2 + 3x, are continuous everywhere on their domain. This continuity implies that limits can often be evaluated by direct substitution. Understanding the behavior of polynomial functions helps in applying the limit definition effectively, especially when proving limits at specific points.
Recommended video:
Introduction to Polynomial Functions