Here are the essential concepts you must grasp in order to answer the question correctly.
Tangent Line
A tangent line to a curve at a given point is a straight line that touches the curve at that point without crossing it. The slope of the tangent line represents the instantaneous rate of change of the function at that point, which can be found using the derivative.
Recommended video:
Derivative
The derivative of a function measures how the function's output value changes as its input value changes. It is defined as the limit of the average rate of change of the function over an interval as the interval approaches zero. For the function y = (x + 5) / (x - 1), the derivative will provide the slope of the tangent line at the point where x = 3.
Recommended video:
Point-Slope Form
The point-slope form of a linear equation is given by y - y1 = m(x - x1), where (x1, y1) is a point on the line and m is the slope. This form is particularly useful for writing the equation of a tangent line once the slope (from the derivative) and the point of tangency (the coordinates of the curve at x = 3) are known.
Recommended video: